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Dynamics of a stochastic linear-growth equation with spatiotemporal correlated noise
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The Edwards-Wilkinson(EW) equation[Proc. R. Soc. London, Ser. 881, 17 (1982] with long-range
spatiotemporal noise correlation of the power-law form for arbitrary substrate dimensionality is analyzed in
detail. We obtain in closed form not only the interfacial width but also various correlation functions charac-
terizing the system. This information can be employed for the comparison with experiments directly, permit-
ting determination of various parameters. Furthermore, we demonstrate explicitly that the interface described
by the EW equation with correlated noise for arbitrary substrate dimensionality is still a self-affine fractal
governed by dynamic scalin§S1063-651X97)07112-2

PACS numbg(s): 05.40+j, 81.10.Aj, 02.50-r

The kinetic roughening phenomenon of growing inter-roughening driven through a medium with random fields, is
faces in random media has brought about much interest farorrect. The calculations in this work generalize the previous
its widespread applications in natyrd. Mathematically, the  results in Ref[6], which mainly deals with the EW equation
partial differential equations with stochastic noise compo-Wwith spatial correlated noise int11 dimensions. The outline
nents are often used to describe the continuum limit of th@f this paper is as follows. We first review the usual tech-
evolution of the growing interfacegl]. One of the best- nique of solving the stochastic diffusion-type equations and
known examples is the Edwards-Wilkins¢BW) equation ~ point out its limitations. Then we study extensively the in-
[2], consisting of two terms: the Laplacian component anderfacial width and the various correlation functions. We ob-
the white-noise component. The EW equation has beetfin not only the values of the critical exponents but also the
widely accepted as a standard model appropriate to kinetigXact expressions of the scaling functions for arbitrary sub-
roughening phenomena in which the competing effects argtrate dimensionality and noise correlation of the power-law
surface tension relaxation and the incessant peppering of stéarm. Finally, we discuss the implications of the results ob-
chastic noise. Recently, it was pointed §84] that the spa- tained and their applications related to experiments.
tiotemporal white-noise assumption for the EW equation is Here we consider the interfacial profilg(x,t) in d+1
invalid if the substrate dimensionality is higher than two.dimensions, governed by the EW equation with spatiotempo-
Moreover, it showd3,4] that the noise correlation must be ral correlated noise:
less singular than thé function in order to obtain the physi-
cally reasonable solution. This motivates us to study the EW ah(x,t) =vV2h(x,t) + n(x,t), «h)
equation with long-range noise correlation in the higher
(than two substrate dimensionality in order to see how thewhereh(x,t) is the interface height is a coordinate in the
interfacial behavior varies with the different noise correla-d-dimensional substrate, ang(x,t) represents the noise.
tion. In addition, it has also been conjectured recefy The noisen(x,t) has zero mean and its correlated variance is
that the EW equation with temporal correlated noise is suitgiven as
able for describing the interface roughening in driven mag-
netic systems with quenched disorder, of which the experi- (p(x, 1) (X" t"))y=2D|x—x'|?*"9t—t'|?"L, (2
mental realization is a diluted antiferromagnet in an applied
magnetic field. Jost and Usadél] conjectured that the ran- with 0<p<d/2 and 0<6<3 to account for the decaying
dom fields at the moving interface play the role of an effec-jong-distance noise correlation. For the self-containment of
tive noise. The correlations between the random fields at thﬂ]e paper, we first bneﬂy review the usual technique of deal-
interface have been measured numericflyto be tempo-  ing with the stochastic diffusion-type equations, which has
rally power-law correlatedt—t’| =% Therefore, a rigorous peen mentioned in the previous work of RES]. As usual,

study of the EW equation with correlated noise is the veryby applying a Fourier transformation tospace, we get
next step necessary for establishing the whole theoretical

foundation related to the EW equation. &tnh'(k,t)z _ vkzﬁ(k,t)+77(k,t). 3)

In this paper we give a comprehensive analysis of the EW
equation with long-range spatiotemporal correlated noise Oi'he solution for Eq.(3), under the assumption of the flat
the power-law form for arbitrary substrate dimensionality.initial condition. is eésil,y obtained
We specifically choose the noise correlation to be long-range '
correlated of the power-law form for two reasons. First, it is _ ‘
pointed out in Ref[8] that the power-law correlated noise h(k,t)=e~ sztf evkzﬂ’;;(k,T)dT_ (4)
may represent the effect of removing fast degrees of free- 0
dom. Second, the results of this paper then can be used to
clarify whether the conjecturlés], related to the domain wall Here the correlated variance between noisels gpace is
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where the notations are defined@s(q4,9,,...,0q) andq
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with y(26+1;*y) denoting the incomplete gamma func-
tion [7]. When t—x, g(g?vt/L?) approaches a constant
I'(26+1). Thus we find the scaling function

) D, ddq
f(vt/L )|t%=§2m F(29+1)f Qe

2—2 cosy; 12

|

which gives us the amplitude prefactor for the steady-state

with S4_;, I', and Ji4_5)» denoting the surface area of a interfacial width. Note that the restrictionml ¢ 2)/2<p+26
(d—1)-dimensional unit sphere, the Gamma function, and<d/2 is necessary to avoid the divergence of E). The

the Bessel function of the first kinf7], respectively. Note above restriction on the noise correlation in fact implies that
that 0< p<(d+1)/4 is required for the convergencelf,.  the interfacial roughness exponept =p+26+(2—d)/2]
Consequently, the application of the Fourier method is reis positive and less than 1, nameWis,/L vanishes in the
stricted to the range in which the value of the noise spatiafhermodynamic limit. Thus the kinetically roughened inter-
correlation exponenp is between 0 andd+1)/4. To the facial profile, described by the Edwards-Wilkinson equation
author’s knowledge, the limitation for applying the Fourier With long-range spatiotemporal correlated noise, is still
technique has not been discussed in the literature. The abo$g100th on macroscopic length scales. In contrast, the

procedure is a direct generalization of the previous re§@its
to arbitrary substrate dimensionality.
The interfacial widthW(L,t) is defined as

wz(L,t>EL-d< JOdex[h(x,t)—h,_(t)]z . ®

with L denoting the lateral segment of the surfabe(t)
=L 9fth(x,t)d%, and() the statistical average. The nota-
tions for the interfacial width are in accordance with the
notations in Ref[6]. Substituting Eqs(4) and (5) into Eq.
(8), we obtain

W2(L,t)=L2pF40+2-df(1t/ 2), 9
Consequently, the steady-state roughness expogend
+260+(2—d)/2, revealing a spatiotemporal symmetry
through the combinatiop+26, while the dynamical expo-
nentz=2, independent of the values of the noise correlatio
exponents(p and 6). In contrast, the Kardar-Parisi-Zhang
(KPZ) equation with correlated noi$8,9] does not share the

above symmetries, due to the presence of the nonlinear term

(Vh)? in the KPZ equation.
In Eqg. (9), the scaling function

n

Mullins-Wolf-Villain equation with correlated noisgl0]

ah(x,t)=vV*h(x,t)+ 7(x,t) (13
behaves anomalously in the sense that the roughness expo-
nenty is larger than 1 for +1 and 2+1 dimensions. Typi-
cally, anomalously scaling interfaces suggest multiscaling
behaviors of the systefil1]. However, a rigorous theoretical
treatment is still lacking at the present time.

In the following, we calculate in detail the various corre-
lation functions. The notations for correlation functions are
in accordance with the notations in REL0]. We are inter-
ested in the height difference correlation function, which is
defined as

Cg(X,t,to)E([h(XOJFX,tOJFt)_h(Xo,to)]2>, (14)

with the overbar denoting the spatial average anthe sta-
tistical average. Due to the translational invariance of the
system, the spatial average and the statistical average are
interchangeable. By definition, the equal-time height differ-
ence correlation function is then given by

(15

and the height difference correlation function in the steady
state is given by

G(X,to)ECg(X,t: O,to)
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CS(X!t)E lim Cg(X,t,to). (16) 1:1( Vt0/|x|2)|to>\x\2/v
tg—
2D, = d— o dq
Since, from the experimental point of view, the equal-time ~  gp20+1 V7Sa-1l (20+ 1| — fo q2rrarT3—d
correlation functionG(x,ty) and the saturated correlation
function C4(x,t) are more accessible quantities to be com- % 1 B E <d72>/2\]
pared with the experimental data, we give a detailed analysis d q (d-2)/2(Q)
of G(x,ty) andC¢(x,t) in the following. (5)
Substituting Eqs(4) and (5) into Egs.(14) and(15), we
obtain the equal-time height difference correlation function, Bp 220 4p —
through some tedious calculation, as == g 20712 =40 \[mSy_ 1T (260+ 1)F(T)
G(X,tg)=Cqy(x,t=0,tg) =[X|?4*27df (vto/[x|?), r g—l—p—Zﬂ)
@ X 2 21
I'(l+p+26) ° (21)

where the scaling function
with Sy_4, I', and J4_2),, denoting the surface area of a
~ d (d—1)-dimensional unit sphere, the Gamma function, and
f,(vto/|X|2) = 22}&1 f , d+f,9+2 the Bessel function of the first kifd], respectively. Conse-
Ov q’ quently, we obtain the asymptotic behavior of the scaling
function, which gives us the amplitude prefactor for the
equal-time height difference correlation function in the
steady state. This information can be used to determine vari-
with « denoting the angle betwedq,x) and the functiory  ous phenomenological parameters through comparisons with
given in Eq.(11). Our calculation explicitly shows that the numerical simulations or experimental results.
correlation function does satisfy the usual dynamic scaling Next we studyC(x,t), the height difference correlation
hypothesis with the roughness exponept=p+26+(2  function in the steady state. This quantity is really what the
—d)/2 and the dynamic exponent 2. usual dynamic renormalization-group analyf8$ refers to.
Whent>|x|%/ v, Substituting Eqgs(4) and (5) into Egs.(14) and (16), we
obtain, after straightforward but very tedious calculations,

X(1—€'9)g(q?ty/|x[?), (18

2D dY _
Fa(vto/ X1z x21, = 5z T(20+ 1)f ULl Cs(X,t)—t(I)ITng(X,t,to)

X (1—e'dcos), (19 2D, d%
Sincet describes how far the system is from the initial state,
this information tells us the amplitude of surface fluctuation %
and the characteristic relaxation time growing with the lat-
eral distance a$x|X and |x|% respectively. Note that it re- ,
quires d—2)/2<p+260<d/2 for the convergence of Eq. Xf”“ tdu ¢ cosh vk2t—u)
(19). This restriction on the noise correlation is consistent 0
with the one derived in for the convergence of interfacial
width. Through the analysis of the interfacial width and theBy using the simple technique of change of variables, we can
equal-time correlation function, we obtain the same conclurewrite Eq.(22) as
sion: O<y<1.

Fordi(l, we can integrate Eq19) as Co(x,1) = [x|2P 472798, (wt/|x]?), (23

ik-x

_ Alkex 2
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D
== —0V20i1 F'(26+1)I(-2p—46-1) with « denoting the angle betweeiy,x) and the function

d(y=02vt/|x|?) having the form
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for d>1, (25
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Through the studies oB(x,ty) and C¢(x,t), we explicitty  random fields at the interface, playing the role of an effective
demonstrate that the spatiotemporal correlations of surfaceoise, have been measured numericgillyto be temporally
fluctuations are invariant under the rescalingbx, t—b*,  power-law correlatedt—t’| =% Thus our results are also
andh—b*h, regardless of whether the system is in the tran-useful to prove or disprove the above conjecture through a
sient regime or in the steady state. So the system describe@mparison with data generated from numerical models, e.g.,
by the EW equation with long-range spatiotemporal correq comparison of the asymptotic functional forms of the cor-
lated noise is indeed a perfect example affirming the dyrelation functions. The details will be discussed elsewhere
namic scaling hypothesis. [12].

Furthermore, motivated by the practical interest in depo- | conclusion, we analyzed in detail the Edwards-
sition techniques such as molecular-beam epité8E),  \yilkinson equation with long-range spatiotemporal noise
various stochastic differential equations and cellular auggrrelation of the power-law form for arbitrary substrate di-
tomata[1] have been proposed recently to describe surfaceensionality. We obtained in closed form not only the inter-
growth via MBE in different environments. Our results re- facia| width but also various correlation functions character-
garding correlation functions then can be used to extradhing the system. This information can be employed for the
various phenomenologw_al parameters, e.g,, o, and comparison with experiments directly, permitting determina-
D/»?**1, through comparisons with discrete growth modelstion of various parameters. Furthermore, we demonstrated
or experiments such as scanning tunneling microscopgypiicitly that the interface described by the EW equation
(STM) data or diffuse x-ray reflectivity measurements. Foryith correlated noise for arbitrary substrate dimensionality is
example, the noise correlation exponefasnd ) either are  gtj|| a self-affine fractal governed by dynamic scaling and it
given in discrete growth models or can be obtained by exreveals a spatiotemporal symmetry through the combination
perimental measurement of disorder correlation. Then the 29 pefinitely, the most valuable problem is to obtain the
measurement of the equal-time height difference correlatio| probability functional for the interfacial profile. How-
functions of self-affine surfaces in the steady state prowdegver, the derivation of the temporal evolution of the full
us the information to determine the valueDdf»*’"*, pro-  prohapility functional for the interfacial profile is much more
vided the noise correlation exponents are known. technically challenging since the noise here is long-range

~ On the other hand, it is conjecturggl that the EW equa-  gpatiotemporal correlated. Work on this problem is planned
tion with temporal correlated noise is suitable for describingg, the near future.

the interface roughening, above the depinning transition, in

driven magnetic systems with quenched random fields, of This work was supported in part by the National Science
which the experimental realization is diluted antiferromag-Council of Republic of China under Grant No. NSC 87-
nets in applied magnetic fields. The correlations between th2112-M-002-019.
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