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Dynamics of a stochastic linear-growth equation with spatiotemporal correlated noise

Ning-Ning Pang
Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China

~Received 10 July 1997!

The Edwards-Wilkinson~EW! equation@Proc. R. Soc. London, Ser. A381, 17 ~1982!# with long-range
spatiotemporal noise correlation of the power-law form for arbitrary substrate dimensionality is analyzed in
detail. We obtain in closed form not only the interfacial width but also various correlation functions charac-
terizing the system. This information can be employed for the comparison with experiments directly, permit-
ting determination of various parameters. Furthermore, we demonstrate explicitly that the interface described
by the EW equation with correlated noise for arbitrary substrate dimensionality is still a self-affine fractal
governed by dynamic scaling.@S1063-651X~97!07112-2#

PACS number~s!: 05.40.1j, 81.10.Aj, 02.50.2r
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The kinetic roughening phenomenon of growing inte
faces in random media has brought about much interes
its widespread applications in nature@1#. Mathematically, the
partial differential equations with stochastic noise comp
nents are often used to describe the continuum limit of
evolution of the growing interfaces@1#. One of the best-
known examples is the Edwards-Wilkinson~EW! equation
@2#, consisting of two terms: the Laplacian component a
the white-noise component. The EW equation has b
widely accepted as a standard model appropriate to kin
roughening phenomena in which the competing effects
surface tension relaxation and the incessant peppering of
chastic noise. Recently, it was pointed out@3,4# that the spa-
tiotemporal white-noise assumption for the EW equation
invalid if the substrate dimensionality is higher than tw
Moreover, it shows@3,4# that the noise correlation must b
less singular than thed function in order to obtain the physi
cally reasonable solution. This motivates us to study the
equation with long-range noise correlation in the high
~than two! substrate dimensionality in order to see how t
interfacial behavior varies with the different noise corre
tion. In addition, it has also been conjectured recently@5#
that the EW equation with temporal correlated noise is s
able for describing the interface roughening in driven m
netic systems with quenched disorder, of which the exp
mental realization is a diluted antiferromagnet in an appl
magnetic field. Jost and Usadel@5# conjectured that the ran
dom fields at the moving interface play the role of an effe
tive noise. The correlations between the random fields at
interface have been measured numerically@5# to be tempo-
rally power-law correlated,ut2t8u20.8. Therefore, a rigorous
study of the EW equation with correlated noise is the v
next step necessary for establishing the whole theore
foundation related to the EW equation.

In this paper we give a comprehensive analysis of the
equation with long-range spatiotemporal correlated noise
the power-law form for arbitrary substrate dimensionali
We specifically choose the noise correlation to be long-ra
correlated of the power-law form for two reasons. First, it
pointed out in Ref.@8# that the power-law correlated nois
may represent the effect of removing fast degrees of fr
dom. Second, the results of this paper then can be use
clarify whether the conjecture@5#, related to the domain wal
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roughening driven through a medium with random fields,
correct. The calculations in this work generalize the previo
results in Ref.@6#, which mainly deals with the EW equatio
with spatial correlated noise in 111 dimensions. The outline
of this paper is as follows. We first review the usual tec
nique of solving the stochastic diffusion-type equations a
point out its limitations. Then we study extensively the i
terfacial width and the various correlation functions. We o
tain not only the values of the critical exponents but also
exact expressions of the scaling functions for arbitrary s
strate dimensionality and noise correlation of the power-l
form. Finally, we discuss the implications of the results o
tained and their applications related to experiments.

Here we consider the interfacial profileh(x,t) in d11
dimensions, governed by the EW equation with spatiotem
ral correlated noise:

] th~x,t !5n¹2h~x,t !1h~x,t !, ~1!

whereh(x,t) is the interface height,x is a coordinate in the
d-dimensional substrate, andh(x,t) represents the noise
The noiseh(x,t) has zero mean and its correlated variance
given as

^h~x,t !h~x8,t8!&52Dux2x8u2r2dut2t8u2u21, ~2!

with 0,r,d/2 and 0,u, 1
2 to account for the decaying

long-distance noise correlation. For the self-containmen
the paper, we first briefly review the usual technique of de
ing with the stochastic diffusion-type equations, which h
been mentioned in the previous work of Ref.@6#. As usual,
by applying a Fourier transformation tok space, we get

] th̃~k,t !52nk2h̃~k,t !1h̃~k,t !. ~3!

The solution for Eq.~3!, under the assumption of the fla
initial condition, is easily obtained

h̃~k,t !5e2nk2tE
0

t

enk2th̃~k,t!dt. ~4!

Here the correlated variance between noises ink space is
6676 © 1997 The American Physical Society
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56 6677DYNAMICS OF A STOCHASTIC LINEAR-GROWTH . . .
^h̃~k,t !h̃~k8,t8!&52D̃ruku22rdd~k1k8!ut2t8u2u21.
~5!

For d51, the prefactorD̃r is simply

D̃r5
D

p E
0

`

du u2r21 cosu5
D

p
G~2r!cos~rp!. ~6!

For d.1, the prefactor

D̃r5D
Sd21

~2p!d E
0

`

du u2r21E
0

p

du sind22u exp~ iu cosu!

5D

ApSd21GS d21

2 D
~2p!d E

0

`

du u2r21S 2

uD ~d22!/2

3J~d22!/2~u!

5D
Ap22r21Sd21

~2p!d

GS d21

2 DG~r!

GS d

2
212r D , ~7!

with Sd21 , G, and J(d22)/2 denoting the surface area of
(d21)-dimensional unit sphere, the Gamma function, a
the Bessel function of the first kind@7#, respectively. Note
that 0,r,(d11)/4 is required for the convergence ofD̃r .
Consequently, the application of the Fourier method is
stricted to the range in which the value of the noise spa
correlation exponentr is between 0 and (d11)/4. To the
author’s knowledge, the limitation for applying the Fouri
technique has not been discussed in the literature. The a
procedure is a direct generalization of the previous results@6#
to arbitrary substrate dimensionality.

The interfacial widthW(L,t) is defined as

W2~L,t ![L2dK E
0

L

ddx@h~x,t !2hL~ t !#2L , ~8!

with L denoting the lateral segment of the surface,hL(t)
[L2d*0

Lh(x,t)ddx, and^ & the statistical average. The not
tions for the interfacial width are in accordance with t
notations in Ref.@6#. Substituting Eqs.~4! and ~5! into Eq.
~8!, we obtain

W2~L,t !5L2r14u122df ~nt/L2!. ~9!

Consequently, the steady-state roughness exponentx5r
12u1(22d)/2, revealing a spatiotemporal symmet
through the combinationr12u, while the dynamical expo-
nentz52, independent of the values of the noise correlat
exponents~r and u!. In contrast, the Kardar-Parisi-Zhan
~KPZ! equation with correlated noise@8,9# does not share the
above symmetries, due to the presence of the nonlinear
(“h)2 in the KPZ equation.

In Eq. ~9!, the scaling function
d

-
l

ve

n

rm

f ~nt/L2!5
D̃r

un2u11 E ddq

q2r14u12

3S 12)
i 51

d
222 cosqi

qi
2 D g~q2nt/L2!, ~10!

where the notations are defined asq[(q1 ,q2 ,...,qd) andq
[uqu and the functiong(y5q2nt/L2) has the form

g~y!5E
0

y

du u2ue2u1e22yE
0

y

du u2ueu

5g~2u11;y!1~21!2u11e22yg~2u11;2y!,

~11!

with g(2u11;6y) denoting the incomplete gamma fun
tion @7#. When t→`, g(q2nt/L2) approaches a constan
G(2u11). Thus we find the scaling function

f ~nt/L2!u t→`5
D̃r

un2u11 G~2u11!E ddq

q2r14u12

3S 12)
i 51

d
222 cosqi

qi
2 D , ~12!

which gives us the amplitude prefactor for the steady-s
interfacial width. Note that the restriction (d22)/2,r12u
,d/2 is necessary to avoid the divergence of Eq.~12!. The
above restriction on the noise correlation in fact implies t
the interfacial roughness exponentx @5r12u1(22d)/2#
is positive and less than 1, namely,Wsat/L vanishes in the
thermodynamic limit. Thus the kinetically roughened inte
facial profile, described by the Edwards-Wilkinson equati
with long-range spatiotemporal correlated noise, is s
smooth on macroscopic length scales. In contrast,
Mullins-Wolf-Villain equation with correlated noise@10#

] th~x,t !5n¹4h~x,t !1h~x,t ! ~13!

behaves anomalously in the sense that the roughness e
nentx is larger than 1 for 111 and 211 dimensions. Typi-
cally, anomalously scaling interfaces suggest multiscal
behaviors of the system@11#. However, a rigorous theoretica
treatment is still lacking at the present time.

In the following, we calculate in detail the various corr
lation functions. The notations for correlation functions a
in accordance with the notations in Ref.@10#. We are inter-
ested in the height difference correlation function, which
defined as

Cg~x,t,t0![^@h~x01x,t01t !2h~x0 ,t0!#2&, ~14!

with the overbar denoting the spatial average and^ & the sta-
tistical average. Due to the translational invariance of
system, the spatial average and the statistical average
interchangeable. By definition, the equal-time height diff
ence correlation function is then given by

G~x,t0![Cg~x,t50,t0! ~15!

and the height difference correlation function in the stea
state is given by
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Cs~x,t ![ lim
t0→`

Cg~x,t,t0!. ~16!

Since, from the experimental point of view, the equal-tim
correlation functionG(x,t0) and the saturated correlatio
function Cs(x,t) are more accessible quantities to be co
pared with the experimental data, we give a detailed anal
of G(x,t0) andCs(x,t) in the following.

Substituting Eqs.~4! and ~5! into Eqs.~14! and ~15!, we
obtain the equal-time height difference correlation functio
through some tedious calculation, as

G~x,t0![Cg~x,t50,t0!5uxu2r14u122df 1~nt0 /uxu2!,
~17!

where the scaling function

f 1~nt0 /uxu2!5
2D̃r

un2u11 E ddq

q2r14u12

3~12eiq cosa!g~q2nt0 /uxu2!, ~18!

with a denoting the angle between~q,x! and the functiong
given in Eq.~11!. Our calculation explicitly shows that th
correlation function does satisfy the usual dynamic sca
hypothesis with the roughness exponentx5r12u1(2
2d)/2 and the dynamic exponentz52.

When t0@uxu2/n,

f 1~nt0 /uxu2!u t0@uxu2/n5
2D̃r

un2u11 G~2u11!E ddq

q2r14u12

3~12eiq cosa!. ~19!

Sincet0 describes how far the system is from the initial sta
this information tells us the amplitude of surface fluctuati
and the characteristic relaxation time growing with the l
eral distance asuxux and uxuz, respectively. Note that it re
quires (d22)/2,r12u,d/2 for the convergence of Eq
~19!. This restriction on the noise correlation is consiste
with the one derived in for the convergence of interfac
width. Through the analysis of the interfacial width and t
equal-time correlation function, we obtain the same conc
sion: 0,x,1.

For d51, we can integrate Eq.~19! as

f 1~nt0 /uxu2!u t0@uxu2/n

5
4D̄r

un2u11 G~2u11!E
0

` dq

q2r14u12 ~12cosq!

52
4D̃r

un2u11 G~2u11!G~22r24u21!

3cos@~r12u11/2!p#; ~20!

for d.1,
-
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f 1~nt0 /uxu2!u t0@uxu2/n

5
2D̃r

un2u11 ApSd21G~2u11!GS d21

2 D E
0

` dq

q2r14u132d

3F 1

GS d

2D2S 2

qD ~d22!/2

J~d22!/2~q!G
52

D̃r

un2u11 2d2222r24uApSd21G~2u11!GS d21

2 D

3

GS d

2
212r22u D

G~11r12u!
, ~21!

with Sd21 , G, and J(d22)/2 denoting the surface area of
(d21)-dimensional unit sphere, the Gamma function, a
the Bessel function of the first kind@7#, respectively. Conse
quently, we obtain the asymptotic behavior of the scal
function, which gives us the amplitude prefactor for t
equal-time height difference correlation function in th
steady state. This information can be used to determine v
ous phenomenological parameters through comparisons
numerical simulations or experimental results.

Next we studyCs(x,t), the height difference correlation
function in the steady state. This quantity is really what t
usual dynamic renormalization-group analysis@8# refers to.
Substituting Eqs.~4! and ~5! into Eqs. ~14! and ~16!, we
obtain, after straightforward but very tedious calculations

Cs~x,t ![ lim
t0→`

Cg~x,t,t0!

5
2D̃r

un2u11 G~2u11!E ddk

k2r14u12

3F12eik•x cosh~nk2t !1
eik•x

G~2u11!

3E
0

nk2t
du u2u cosh~nk2t2u!G . ~22!

By using the simple technique of change of variables, we
rewrite Eq.~22! as

Cs~x,t !5uxu2r14u122df 2~nt/uxu2!, ~23!

where the scaling function

f 2~nt/uxu2!5
2D̃r

un2u11 G~2u11!E ddq

q2r14u12

3@12eiq cosaĝ~q2nt/uxu2!#, ~24!

with a denoting the angle between~q,x! and the function
ĝ(y5q2nt/uxu2) having the form

ĝ~y!5coshy2
1

G~2u11!
E

0

y

du u2u cosh~y2u!.

~25!
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Through the studies ofG(x,t0) and Cs(x,t), we explicitly
demonstrate that the spatiotemporal correlations of sur
fluctuations are invariant under the rescalingx→bx, t→bzt,
andh→bxh, regardless of whether the system is in the tra
sient regime or in the steady state. So the system descr
by the EW equation with long-range spatiotemporal cor
lated noise is indeed a perfect example affirming the
namic scaling hypothesis.

Furthermore, motivated by the practical interest in de
sition techniques such as molecular-beam epitaxy~MBE!,
various stochastic differential equations and cellular
tomata@1# have been proposed recently to describe surf
growth via MBE in different environments. Our results r
garding correlation functions then can be used to ext
various phenomenological parameters, e.g.,r, u, and
D/n2u11, through comparisons with discrete growth mod
or experiments such as scanning tunneling microsc
~STM! data or diffuse x-ray reflectivity measurements. F
example, the noise correlation exponents~r andu! either are
given in discrete growth models or can be obtained by
perimental measurement of disorder correlation. Then
measurement of the equal-time height difference correla
functions of self-affine surfaces in the steady state provi
us the information to determine the value ofD/n2u11, pro-
vided the noise correlation exponents are known.

On the other hand, it is conjectured@5# that the EW equa-
tion with temporal correlated noise is suitable for describ
the interface roughening, above the depinning transition
driven magnetic systems with quenched random fields
which the experimental realization is diluted antiferroma
nets in applied magnetic fields. The correlations between
,
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random fields at the interface, playing the role of an effect
noise, have been measured numerically@5# to be temporally
power-law correlatedut2t8u20.8. Thus our results are als
useful to prove or disprove the above conjecture throug
comparison with data generated from numerical models, e
a comparison of the asymptotic functional forms of the c
relation functions. The details will be discussed elsewh
@12#.

In conclusion, we analyzed in detail the Edward
Wilkinson equation with long-range spatiotemporal no
correlation of the power-law form for arbitrary substrate d
mensionality. We obtained in closed form not only the inte
facial width but also various correlation functions charact
izing the system. This information can be employed for t
comparison with experiments directly, permitting determin
tion of various parameters. Furthermore, we demonstra
explicitly that the interface described by the EW equati
with correlated noise for arbitrary substrate dimensionality
still a self-affine fractal governed by dynamic scaling and
reveals a spatiotemporal symmetry through the combina
r12u. Definitely, the most valuable problem is to obtain t
full probability functional for the interfacial profile. How-
ever, the derivation of the temporal evolution of the fu
probability functional for the interfacial profile is much mor
technically challenging since the noise here is long-ran
spatiotemporal correlated. Work on this problem is plann
for the near future.
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